Water & wastewater infrastructure : (Record no. 7323)

000 -LEADER
fixed length control field 12035cam a22003734a 4500
001 - CONTROL NUMBER
control field 17507185
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20151202155441.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 121024s2013 flua b 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2012034119
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781466517851 (hbk.)
040 ## - CATALOGING SOURCE
Original cataloging agency Indian Institute for Human Settlements-Bangalore
Transcribing agency DLC
Modifying agency IIHS
Language of cataloging eng
Description conventions rda
042 ## - AUTHENTICATION CODE
Authentication code pcc
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 628.10287 SPE
Edition number 23
Item number 007668
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Spellman, Frank R.
245 10 - TITLE STATEMENT
Title Water & wastewater infrastructure :
Remainder of title energy efficiency and sustainability /
Statement of responsibility, etc Frank R. Spellman.
246 3# - VARYING FORM OF TITLE
Title proper/short title Water and wastewater infrastructure
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Boca Raton, FL :
Name of publisher, distributor, etc CRC Press,Taylor & Francis,
Date of publication, distribution, etc c2013.
300 ## - PHYSICAL DESCRIPTION
Extent xix, 443 pages :
Other physical details illustrations ;
Dimensions 26 cm
336 ## - Content type term (R)
Source (NR) rdacontent
Content type term (R) text
337 ## - Media Type (R)
Source (NR) rdamedia
Media type term (R) unmediated
338 ## - Carrier Type (R)
Source (NR) rdacarrier
Carrier type term (R) volume
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note Section I The Basics
1.Introduction
1.1.Setting the Stage
1.2.Sustainable Water/​Wastewater Infrastructure
1.2.1.Maintaining Sustainable Infrastructure
1.2.2.Cash Cows or Cash Dogs?
1.3.Water/​Wastewater Infrastructure Gap
1.4.Energy Efficiency: Water/​Wastewater Treatment Operations
References and Recommended Reading
2.Characteristics of the Wastewater and Drinking Water Industries
2.1.Introduction
2.1.1.Wastewater and Drinking Water Terminology
2.2.Characteristics of the Wastewater Industry
2.2.1.Wastewater Treatment Process: The Model
2.3.Characteristics of the Drinking Water Industry
2.4.Capital Stock and Impact on Operations and Maintenance
2.4.1.Useful Life of Assets
2.4.2.Operating and Maintaining Capital Stock
2.5.Wastewater Capital Stock
2.6.Drinking Water Capital Stock
2.7.Costs of Providing Service
3.Water, Wastewater, and Energy
Contents note continued: 3.1.Introduction
3.2.Energy Basics
3.2.1.Potential Energy
3.2.2.Kinetic Energy
3.3.Renewable and Nonrenewable Energy
3.3.1.Mix of Energy Production Changes
3.4.Units for Comparing Energy
4.Planning for a Sustainable Energy Future
4.1.Wastewater and Drinking Water Treatment Energy Usage
4.1.1.Current and Future Challenges
4.2.Fast Facts
4.3.Benchmark It!
4.3.1.What Benchmarking Is
4.3.2.Potential Results of Benchmarking
4.3.3.Targets
4.3.4.Process of Benchmarking
4.3.5.Benchmarking Steps
4.3.6.Collection of Baseline Data and Tracking Energy Use
4.4.Baseline Audit
4.4.1.Field Investigation
4.4.2.Create Equipment Inventory and Distribution of Demand and Energy
Section II Energy-Efficient Equipment, Technology, and Operating Strategies
5.Energy-Efficient Equipment
5.1.Introduction
5.2.Motors
5.2.1.AC Motors
Contents note continued: 5.2.2.Electric Motor Load and Efficiency
5.2.3.Determining Motor Loads
5.2.4.Determining Motor Efficiency
5.3.Variable-Frequency Drives
5.4.HVAC Enhancements
5.5.Energy-Smart Lighting
6.Energy-Efficient Operating Strategies
6.1.Introduction
6.2.Electrical Load Management
6.2.1.Rate Schedules
6.2.2.Energy Demand Management
6.2.3.Electrical Load Management Success Stories
6.3.Biosolids Management
6.3.1.Biosolids: Background Information
6.3.2.Sources of Biosolids
6.3.3.Biosolids Characteristics
6.4.Operations and Maintenance: Energy- and Cost-Saving Procedures
6.4.1.Chandler Municipal Utilities, Arizona
6.4.2.Airport Water Reclamation Facility, Prescott, Arizona
6.4.3.Somerton Municipal Water, Arizona
6.4.4.Hawaii County Department of Water Supply
6.4.5.Eastern Municipal Water District, California
Contents note continued: 6.4.6.Port Drive Water Treatment Plant, Lake Havasu, Arizona
6.4.7.Truckee Meadows Water Authority, Reno, Nevada
6.4.8.Tucson Water, Arizona
6.4.9.Prescott-Chino Water Production Facility, Prescott, Arizona
6.4.10.Somerton Municipal Wastewater Treatment Plant, Arizona
6.5.Inflow and Infiltration Control
6.5.1.Combined Sewer Systems
6.5.2.Basement Sump Pump Redirection
Section III Energy-Efficient Technology
7.Combined Heat and Power (CHP)
7.1.Introduction
7.2.CHP Key Definitions
7.3.Calculating Total CHP System Efficiency
7.4.Calculating Effective Electric Efficiency
7.5.Selecting CHP Efficiency Metrics
7.6.Wastewater Treatment Facilities with CHP
7.7.Overview of CHP Technologies
8.Gas Turbines
8.1.Introduction
8.2.Applications
8.3.Gas Turbine Technology
8.3.1.Modes of Operation
8.3.2.Design Characteristics
Contents note continued: 8.3.3.Performance Characteristics
8.3.4.Emissions
9.Microturbines
9.1.Introduction
9.2.Microturbine Applications
9.3.Microturbine Technology
9.3.1.Basic Components
9.3.2.CHP Operation
9.4.Design Characteristics
9.5.Microturbine Performance Characteristics
9.5.1.Effects of Ambient Conditions on Performance
9.5.2.Heat Recovery
9.5.3.Performance and Efficiency Enhancements
9.5.4.Maintenance
9.5.5.Fuels
9.5.6.Availability
9.5.7.Disadvantages
9.6.Emissions
10.Reciprocating Engines
10.1.Introduction
10.2.Applications
10.2.1.Combined Heat and Power
10.3.Reciprocating Engine Technology
10.4.Design Characteristics
10.5.Performance Characteristics
10.5.1.Electrical Efficiency
10.5.2.Load Performance
10.5.3.Heat Recovery
10.5.4.Performance and Efficiency Enhancements
10.5.5.Maintenance
10.5.6.Fuels
Contents note continued: 10.6.Emissions
10.6.1.Nitrogen Oxides (NOx)
10.6.2.Carbon Monoxide
10.6.3.Unburned Hydrocarbons
10.6.4.Carbon Dioxide
11.Steam Turbines
11.1.Introduction
11.2.Applications
11.2.1.Industrial and CHP Applications
11.2.2.Combined-Cycle Power Plants
11.3.Steam Turbine: Basic Process and Components
11.3.1.Boilers
11.3.2.Types of Steam Turbines
11.3.3.Design Characteristics
11.4.Performance Characteristics
11.4.1.Electrical Efficiency
11.4.2.Operating Characteristics
11.4.3.Process Steam and Performance Trade-Offs
11.4.4.CHP System Efficiency
11.4.5.Performance and Efficiency Enhancements
11.4.6.Steam Reheat
11.4.7.Combustion Air Preheating
11.4.8.Maintenance
11.4.9.Fuels
11.4.10.Availability
11.5.Emissions
12.Fuel Cells
12.1.Introduction
12.2.Fuel Cells: The Basics
Contents note continued: 12.2.1.Open Cells vs. Closed Cells
12.3.Hydrogen Fuel Cells: A Realistic View
12.3.1.Hydrogen Storage
12.3.2.How a Hydrogen Fuel Cell Works
12.4.CHP Applications
Section IV Biomass Power and Heat Generation
13.CHP and Wastewater Biogas
13.1.Grasshopper Generation
13.2.Biomass
13.2.1.Feedstock Types
13.2.2.Composition of Biomass
13.3.Biomass for Power and Heat Generation
13.4.Biogas (Methane, CH4)
13.4.1.The 411 on Methane
13.5.Wastewater Treatment Plant Biogas
13.5.1.Anaerobic Digestion
13.6.Cogeneration Using Landfill Biogas
13.7.Biodiesel
Section V Sustainability Using Renewable Energy
14.Macro- and Microhydropower
14.1.Introduction
14.2.Hydropower
14.2.1.Impoundment
14.2.2.Diversion
14.2.3.Pumped Storage
14.3.Hydropower Basic Concepts
14.3.1.Stevin's Law
14.3.2.Density and Specific Gravity
Contents note continued: 14.3.3.Force and Pressure
14.3.4.Hydrostatic Pressure
14.3.5.Head
14.3.6.Flow and Discharge Rates: Water in Motion
14.3.7.Area and Velocity
14.3.8.Pressure and Velocity
14.3.9.Conservation of Energy
14.3.10.Energy Head
14.3.11.Energy Available
14.3.12.Major Head Loss
14.3.13.Minor Head Loss
14.4.Reservoir Stored Energy
14.5.Hydroturbines
14.5.1.Impulse Turbine
14.5.2.Reaction Turbine
14.6.Advanced Hydropower Technology
14.7.Hydropower Generation: Dissolved Oxygen Concerns
14.8.Bottom Line on Macrohydropower
14.9.Microhydropower Concepts
14.9.1.Microhydropower Key Terms
14.9.2.Potential Microhydropower Sites
14.9.3.Head at Potential Microhydropower Site
14.9.4.Flow at Potential Microhydropower Site
14.9.5.Economics
14.10.Permits and Water Rights
15.Solar Power
15.1.Introduction
15.2.Concentrating Solar Power
Contents note continued: 15.2.1.Linear Concentrators
15.2.2.Dish/​Engine Systems
15.2.3.Power Tower System
15.2.4.Thermal Energy Storage
15.3.Photovoltaics (PV)
15.4.Solar Power Applications
15.4.1.Solar Hot Water
15.4.2.Solar Process Heat
15.5.Structure Daylighting
15.5.1.Daylight Zone
15.5.2.Window Design Considerations
15.5.3.Effective Aperture (EA)
15.5.4.Light Shelves
15.5.5.Toplighting Strategies
15.6.Water and Wastewater Treatment Plant Applications
16.Wind Power
16.1.Introduction
16.2.It's All about the Wind
16.3.Air in Motion
16.4.Wind Energy
16.5.Wind Power Basics
16.6.Wind Turbine Types
16.6.1.Horizontal-Axis Wind Turbines
16.7.Turbine Features
16.8.Wind Energy and Power Calculations
16.8.1.Air-Density Correction Factors
16.8.2.Elevation and Earth's Roughness
16.8.3.Wind Turbine Rotor Efficiency
16.8.4.Derivation of Betz's Law
Contents note continued: 16.8.5.Tip Speed Ratio (TSR)
16.9.Small-Scale Wind Power
16.10.Wind Power Applications in Water/​Wastewater Treatment
17.Energy Conservation Measures for Wastewater Treatment
17.1.Introduction
17.2.Pumping System Energy Conservation Measures
17.2.1.Pumping System Design
17.2.2.Pump Motors
17.2.3.Power Factor
17.2.4.Variable-Frequency Drives
17.3.Design and Control of Aeration Systems
17.3.1.ECMs for Aeration Systems
17.3.2.Control of the Aeration Process
17.3.3.Innovative and Emerging Control Strategies for Biological Nitrogen Removal
17.4.Blowers
17.4.1.High-Speed Gearless (Turbo) Blowers
17.4.2.Single-Stage Centrifugal Blowers with Inlet Guide Vanes and Variable Diffuser Vanes
17.4.3.New Diffuser Technology
17.4.4.Preventing Diffuser Fouling
17.4.5.Innovative and Emerging Energy Conservation Measures
17.4.6.UV Disinfection
17.4.7.Membrane Bioreactors
Contents note continued: 17.4.8.Anoxic and Anaerobic Zone Mixing
Section VI Appendices
Appendix A Magnetic Bearing Turbo Blowers at the Green Bay Metropolitan Sewerage District De Pere Wastewater Treatment Facility
Appendix B Turblex® Blowers and Air Flow Control Valves on the Sheboygan Regional Wastewater Treatment Plant
Appendix C Upgrade from Mechanical Aeration to Air-Bearing Turbo Blowers and Fine-Bubble Diffusers at the Big Gulch Wastewater Treatment Plant
Appendix D Optical DO Sensor Technology and Aerator Rotor VFD Control at the City of Bartlett, Tennessee, Wastewater Treatment Plant
Appendix E Advanced Aeration Control for the Oxnard, California, Wastewater Treatment Plant
Appendix F DO Optimization Using Floating Pressure Blower Control in a Most Open Valve Strategy at the Narragansett Bay Commission Bucklin Point WTTP, Rhode Island
Contents note continued: Appendix G Capacity and Fuel Efficiency Improvements at Washington Suburban Sanitary Commission Western Branch WWTP, Prince Georges County, Maryland
Appendix H Permit-Safe and Energy-Smart Greening of Wastewater Treatment Plant Operations at the San Jose/​Santa Clara, California, Water Pollution Control Plant
Appendix I Diffuser Upgrades and DO Controlled Blowers at the Waco, Texas, Metropolitan Area Regional Sewer System Wastewater Treatment Facility.
520 ## - SUMMARY, ETC.
Summary, etc "Water and wastewater facilities use large amounts of energy in the form of electricity. One way of keeping energy costs under control is by using renewable or alternative energy supplies. This book discusses the best management practices, innovations, cost-cutting measures, and energy efficiency procedures needed to maintain top-notch functional operation. With energy use now the highest operational cost factor in water plants, the text pays considerable attention to replacing conventional energy supplies with renewable energy sources, discussing these sources and their possible application in detail"--
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Waterworks
General subdivision Energy conservation.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element NATURE / Environmental Conservation & Protection
Source of heading or term bisacsh.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element TECHNOLOGY & ENGINEERING / Environmental / General
Source of heading or term bisacsh.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element TECHNOLOGY & ENGINEERING / Environmental / Water Supply
Source of heading or term bisacsh.
856 42 - ELECTRONIC LOCATION AND ACCESS
Materials specified Table of contents
Uniform Resource Identifier http://openisbn.com/isbn/1466517859/
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 7
b cbc
c orignew
d 1
e ecip
f 20
g y-gencatlg
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Book
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Source of acquisition Cost, normal purchase price Total Checkouts Full call number Barcode Date last seen Date checked out Cost, replacement price Price effective from Koha item type
          Indian Institute for Human Settlements, Bangalore Indian Institute for Human Settlements, Bangalore 2015-11-27 Allied/CR2550/22-09-2015 6605.00 1 628.10286 SPE 007668 007668 2018-08-07 2017-11-14 6605.10 2015-11-27 Book
Hit Counter
//]]>